Journal of Organometallic Chemistry, 218 (1981) 41-60 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DARSTELLUNG UND EIGENSCHAFTEN VON UND REAKTIONEN MIT METALLHALTIGEN HETEROCYCLEN

XX *. DARSTELLUNG, EIGENSCHAFTEN UND KRISTALLSTRUKTUR VON λ^4 -THIA- λ^5 -PHOSPHA- h^2 -METALLABICYCLO[2.2.1]HEPTADIENEN UND IHRE VERWENDUNG ZUR SYNTHESE VON METALLORGANISCHEN UND ORGANISCHEN VERBINDUNGEN

EKKEHARD LINDNER *, AXEL RAU und SIGURD HOEHNE

Institut für Anorganische Chemie der Universität, Auf der Morgenstelle 18, D-7400 Tübingen 1 (B.R.D.)

(Eingegangen den 25. März 1981)

Summary

The novel λ^4 -thia- λ^5 -phospha- h^2 -manganabicyclo [2.2.1] heptadienes (OC)₃- $Mn[CR^{2}CR^{2}CR^{2}CR^{2}PR_{2}^{1}S]$ (R¹ = CH₃, C₆H₅; R² = CO₂CH₃, CO₂C₂H₅, CO₂- $C_{6}H_{11}$) are formed by action of the activated alkynes $R^{2}C = CR^{2}$ on the heterocycles $[(OC)_4MnPR_1^1S]_2$ via the isolable, five-membered heterometallacyclopentadienes (OC)₄MnSPR¹₂C(R²)C(R²). The compound with R¹ = CH₃ and R² = CO_2CH_3 crystallizes in the triclinic space group $P\overline{1}$ with Z = 2 and separates quantitatively the thiophene derivative CR²CR²CR²CR²S under CO pressure or by reaction with $(NH_4)_2Ce(NO_3)_6$. The use of various acetylenes and of acetylenes with different alkyl groups yields the unsymmetric substituted manganabicycloheptadienes (OC)₃Mn [$CR^4CR^3CR^2CR^2P(CH_3)_2S$] (R² = CO₂CH₃, R³ = $R^4 = CO_2C_2H_5$; $R^2 = R^4 = CO_2CH_3$, $R^3 = H$). With propionic acid methylester the alkyne insertion proceeds regiospecifically. With Raney nickel selective S elimination under ring contraction and formation of the λ^4 -phospha- h^2 -manganabicyclo [2.1.1] hexenes (OC)₃Mn [$CR^2CR^3CR^2CR^2PR_2^1$] ($R^1 = CH_3$: $R^2 = R^3 =$ CO_2CH_3 , $CO_2C_2H_5$; $R^2 = CO_2CH_3$, $R^3 = H$; $R^1 = C_6H_5$: $R^2 = R^3 = CO_2C_2H_5$) occurs. (OC)₃Mn[$CR^2CR^3CR^2CR^2P(CH_3)_2$] (R² = R³ = CO₂CH₃) crystallizes in the monoclinic space group $P2_1/m$ with Z = 2. The IR and NMR spectra of the heterocycles are discussed in detail.

^{*} Für XIX. Mitteilung siehe Lit. [29].

Zusammenfassung

Durch Einwirkung der aktivierten Alkine $R^2C \equiv CR^2$ ($R^2 = CO_2CH_3$, $CO_2C_2H_5$, $CO_2C_6H_{11}$) auf die Heterocyclen [(OC)_4MnPR_2^1S]_2 (R¹ = CH₃, C_6H_5), entstehen über die isolierbaren, fünfgliedrigen Heterometallacyclopentadiene $(OC)_4$ - $MnSPR_{1}^{2}C(\mathbb{R}^{2})C(\mathbb{R}^{2})$ die neuartigen λ^{4} -Thia- λ^{5} -phospha- h^{2} -manganabicyclo-[2.2.1] heptadiene (OC)₃Mn [CR²CR²CR²CR²PR¹S]. Die Verbindung mit R¹ = CH₃ und $\mathbb{R}^2 = \mathbb{CO}_2\mathbb{CH}_3$ kristallisiert triklin in der Raumgruppe $P\overline{1}$ mit Z = 2und spaltet unter CO-Druck oder bei der Reaktion mit $(NH_4)_2Ce(NO_3)_6$ quantitativ das Thiophen-Derivat $CR^2CR^2CR^2CR^2S$ ab. Die Verwendung unterschiedlicher Acetylene bzw. solcher mit verschiedenen Resten liefert die unsymmetrisch substituierten Manganabicycloheptadiene (OC)₃Mn[CR⁴CR³CR²CR²- $\overline{P(CH_3)_2S}$ (R² = CO₂CH₃, R³ = R⁴ = CO₂C₂H₅; R² = R⁴ = CO₂CH₃, R³ = H). Mit Propinsäuremethylester verläuft die Alkineinschiebung regiospezifisch. Mit Raney-Nickel erfolgt eine selektive S-Eliminierung unter Ringverengung und Bildung der λ^4 -Phospha- h^2 -manganabicyclo[2.1.1]hexene (OC)₃Mn- $CH_3, R^3 = H; R^1 = C_6H_5; R^2 = R^3 = CO_2C_2H_5).$ (OC)₃Mn [$CR^2CR^3CR^2CR^2P$ - $(CH_3)_2$] $(R^2 = R^3 = CO_2CH_3)$ kristallisiert monoklin in der Raumgruppe $P2_1/m$ mit Z = 2. Die IR- und NMR-Spektren der Heterocyclen werden ausführlich diskutiert.

Einleitung

Bei der katalytischen Cyclotrimerisierung von Alkinen und der Cyclocotrimerisierung von Alkinen und Olefinen treten Metallacyclopentadiene oder Metallacyclopentene als Zwischenstufen auf [1,2]. Wie Untersuchungen an Modellverbindungen gezeigt haben, reagieren diese mit weiterem Alkin unter Bildung von h^2 -Metallabicyclo [2.2.1] heptadienen bzw. -heptenen [3-9]. Solche Systeme sind auch als h^4 -Benzol- bzw. h^4 -Cyclohexadien-Komplexe aufzufassen, welche, wie bei den katalytischen Prozessen, freiwillig oder nach Zusatz von bestimmten Liganden bzw. Oxidationsmitteln unter Abspaltung des Metallrestes in das entsprechende Benzol- oder Cyclohexadien-Derivat übergehen. Die Übertragung dieses Prinzips auf die Darstellung von Heterocyclen gelang bislang nur bei der kobaltkatalysierten Cyclotrimerisierung von Acetylenen und Nitrilen zu Pyridinverbindungen [10]. Hier ist jedoch die Isolierung der N-haltigen Zwischenstufen noch nicht gelungen [11]. In dieser Arbeit wird erstmals ausführlich über die Synthese phosphor- und schwefelanaloger Systeme aus P=S-haltigen Metallacyclopentadienen [12,13] berichtet und ihr Verhalten [14] im Hinblick auf Heterocyclensynthesen untersucht.

Resultate und Diskussion

Vor einiger Zeit berichteten wir über neuartige λ^4 -Thia- λ^5 -phospha- h^2 -manganabicyclo [2.2.1] heptadiene [15], die einen Ausgangspunkt für die Synthese organischer Substrate bilden. Inzwischen konnte gezeigt werden, dass es sich hier um eine allgemein anwendbare Reaktion handelt, sofern elektronenarme Alkine verwendet werden. Nach neueren Untersuchungen verlaufen die Reaktionen über die Stufe der gegenüber aktivierten Acetylenen kinetisch labilen λ^4 -Thia- λ^5 -phosphamanganacyclopentadiene des Typs (OC)₄MnSPR¹₂C(R²)C(R²) [13], welche durch Einschiebung solcher Alkine in die Metall—Phosphor-Bindung der dreigliedrigen cyclischen Dissoziationsprodukte (OC)₄MnPR¹₂S der Heterocyclen [(OC)₄MnPR¹₂S]₂ (R = CH₃, C₆H₅) [16] entstehen.

 $(R^{1} = CH_{3}, C_{6}H_{5}; R^{2} = CO_{2}CH_{3}, CO_{2}C_{2}H_{5}, CO_{2}C_{6}H_{11})$

Unter Aufnahme von weiterem Alkin tritt CO-Substitution in den Heterometallolen ein. Die hierbei intermediär gebildeten h^2 -Alkinheteromanganacyclopentadien-Komplexe sind allerdings nicht fassbar und lagern sich unter Einschiebung des h^2 -gebundenen Alkins in die Mangan-Kohlenstoff-Bindung zum unterkoordinierten Heteromanganacycloheptatrien um. Letzteres geht unter reduktiver C-S-Kupplung in das koordinativ gesättigte λ^4 -Thia- λ^5 -phospha- h^2 manganabicyclo [2.2.1] heptadien über.

Ein Hinweis, der für das Auftreten eines Metallacycloheptatriens als Intermediat und gegen einen Diels—Alder-ähnlichen Mechanismus spricht, sind Untersuchungen an C-analogen Rutheniumkomplexen, bei denen erstmals die Cyclotrimerisierung von Acetylenen auf der Stufe eines isolierbaren Ruthenacycloheptadiens angehalten werden konnte [17].

Isoliert man die primär entstehenden Heteromanganacyclopentadiene und setzt sie dann mit Acetylenen um, so lassen sich die h^2 -Heteromanganabicyclo-[2.2.1]heptadiene gezielt und in hohen Ausbeuten darstellen. Durch Verwendung unterschiedlicher Acetylene in beiden Reaktionsstufen bzw. solcher mit verschiedenen Resten sind unsymmetrisch substituierte Metallabicycloheptadiene zugänglich.

 $(R^2 = CO_2CH_3, R^3 = R^4 = CO_2C_2H_5; R^2 = R^4 = CO_2CH_3, R^3 = H)$

Regiospezifisch verläuft die Einschiebung des Propiolsäuremethylesters in die Mn–C-Bindung von $(OC)_4$ MnSP $(CH_3)_2C(CO_2CH_3)C(CO_2CH_3)$ wobei sich, wie die NMR-Spektren zeigen, ausschliesslich das h^2 -Heteromanganabicycloheptadien mit an C(6) gebundenem Proton bildet. Das Auftreten des zweiten Alkins mit den beiden Kohlenstoffatomen in C(1)- und C(6)-Stellung im Heterometallabicyclus ist somit ein weiteres Indiz für den vorgeschlagenen Mechanismus.

Die in polaren organischen Solventien gut löslichen, thermisch sowie gegenüber Luftsauerstoff bemerkenswert stabilen Verbindungen $(OC)_3$ Mn- $[CR^2CR^2CR^2CR^2PR_2^1S]$ spalten bei der Einwirkung von CO (200 bar) oder Cer(IV)-Salzen den Mn(CO)₃- [6] und PR₂¹-Rest ab, wie am Beispiel von $(OC)_3$ -Mn $[CR^2CR^2CR^2CR^2P(CH_3)_2S]$ ($R^2 = CO_2CH_3$) gezeigt werden konnte. Bei dem verbleibenden Fragment handelt es sich um das in hohen Ausbeuten anfallende Thiophen-Derivat $CR^2CR^2CR^2CR^2S$ ($R^2 = CO_2CH_3$) [18]. Triebfeder

dieses Reaktionsverlaufs ist zweifelsohne die hohe Stabilität des entsprechenden aromatischen Thiophens.

Bei den Bedingungen der katalytischen Hydrierung beobachtet man mit Raney-Nickel eine andere Art der Eliminierung. Unter Ringverengung tritt eine selektive Entschwefelung [19] zum λ^4 -Phospha- h^2 -manganabicyclo[2.1.1]hexen ein, welches auch als h^4 -Phospholkomplex aufgefasst werden kann. Die

 $(R = CH_3; R = R = CO_2CH_3, CO_2C_2H_5;$ $R^2 = CO_2CH_3, R^3 = H; R^1 = C_6H_5; R^2 = R^3 = CO_2C_2H_5)$

EINIGE CHARAKTERISTISCHE SCHWIN UND (OC)3Mn[CH ⁴ CR ³ CR ¹ CR ² PR ₅ S] SOV	GUNGEN IN D <u>EN IR-Spektr</u> ed Wie (OC) ₃ Mn[cr ² cr ² cr ² di	N (in cm ⁻¹) DE R <mark>1</mark> 1 UND (OC)	er he <u>tero</u> ₃ Mn[cR ² cR	MANGANABICY ³ CR ² CR ² PR ¹ ₂]	clen (oc) ₃ mı[c ^{R2} cR ² cR ² cR ² PR ³ S]
Verbindung		µ(C≡O) ^a			$ \mu(p=s) b $
(00) ₃ Mn[CR ² CR ² CR ² CR ² P(CH ₃) ₂ S]	$(R^2 = CO_2 CH_3)$ $(R^2 = CO_2 C_2 H_5)$	2028sst, 2024sst,	1957st, 1952st,	1944st-sst 1942st-sst	530s 534s
1001 Mul CR2CR2CR2CR2P(C/H-) S1	$(R^2 = CO_2 C_6 H_{11})$	2023sst,	1954st, 1969ef	1938st-sst 1969et	5255 698-
	$(R^2 = CO_3C_3H_5)$	2026sst.	1956st.	1949st	628s
$(OC)_{3}Mn[CR^{4}CR^{3}CR^{2}CR^{2}P(CH_{3})_{2}S]$	$(\mathbb{R}^2 = \mathbb{CO}_2^2 \mathbb{CH}_3;$	2026sst,	1954(sch),	1944st-sst	626s
	$R^3 = R^4 = CO_2C_2H_5$ ($R^2 = CO_2CH_3$;	2020sst,	1940st		536s
(OC) ₃ Mn[CR ² CR ² CR ² CR ² P(CH ₃) ₂]	$R^{3} = H; R^{*} = CO_{2}CH_{3})$ ($R^{2} = CO_{2}CH_{3}$)	2028sst,	1958st,	1946st-sst	
(OC) ₃ Mn[<u>CR² CR² CR² CR² P</u> (C ₆ H ₅) ₂]	$(R^2 = CO_2 C_2 H_5)$ $(R^2 = CO_2 C_2 H_5)$	2026sst, 2026sst,	1942st 1955st-sst		
(OC) ₃ Mn[ĊR ² CR ³ CR ² CR ² P(CH ₃) ₂]	$(R^2 = CO_2 CH_3; R^3 = H)$	2022sst,	1942st		
^a In CCl4, ^b In Polyethylen,	والمستقد والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظ				

1

• • • •

TABELLE 1

46

gelben, schwefelfreien Metallabicyclen $(OC)_3 Mn [CR^2CR^3CR^2CR^2PR_2]$ sind thermisch und gegenüber Luftsauerstoff recht stabil. Sie lösen sich gut in polaren organischen Solventien, verhalten sich aber gegenüber einer Abspaltung des Metalls mit Oxidationsmitteln indifferent. Entsprechende Verbindungen sind bisher nur mit drei- oder fünfbindigem Phosphor bekannt [20-22].

Die Massenspektren der Thiaphospha- und Phosphabicyclen bestätigen deren monomere Zusammensetzung. Ausgehend vom Molekülpeak findet eine schrittweise CO-Eliminierung statt. Bemerkenswerterweise erscheint in den Spektren der schwefelhaltigen Spezies eine zusätzliche Fragmentierungsreihe, die u.a. mit hoher Intensität das entsprechende Thiophenderivat aufweist.

Die IR-Spektren der Heteromanganabicyclen $(OC)_3Mn[CR^2CR^2CR^2CR^2PR_2^1S]$, $(OC)_3Mn[CR^4CR^3CR^2CR^2PR_2^1S]$ und $(OC)_3Mn[CR^2CR^3CR^2CR^2PR_2^1]$ sind im 5μ -Bereich durch je zwei intensive C=O-banden (Lsg. in CCl₄) charakterisiert; in einigen Fällen wird infolge von Symmetrieerniedrigung eine Aufhebung der Entartung der längerwelligen Schwingung (Rasse E) beobachtet (vgl. Tab. 1). Die Lage der P=S-Valenzschwingung spricht für eine Einfachbindung mit erheblicher π -Beteiligung.

Durch ihr ¹H-NMR-Spektrum liess sich die Verbindung (OC)₃Mn-[$CR^{2}CHCR^{2}CR^{2}P(CH_{3})_{2}S$] ($R^{2} = CO_{2}CH_{3}$) einwandfrei identifizieren. Man beobachtet für das Proton an C(6) infolge einer über vier Bindungen hinweg reichenden ³¹P-Kopplung nur eine kleine, für die Lage des Protons charakteristische Wechselwirkungskonstante (vgl. Fig. 1). In der entsprechenden Verbindung ohne Schwefel erfolgt Kopplung über nur drei Bindungen hinweg mit einer deutlich grösseren Konstanten [23]. Die P(CH_{3})_{2}-Gruppe in den Komplexen (OC)₃Mn[$CR^{2}CR^{2}CR^{2}CR^{2}P(CH_{3})_{2}S$] und (OC)₃Mn[$CR^{4}CR^{3}CR^{2}CR^{2}P(CH_{3})_{2}S$] verursacht aufgrund der Nichtäquivalenz der beiden Methylgruppen zwei Signale, von denen jedes durch ³¹P-Wechselwirkung in ein Dublett mit unterschiedlichen Kopplungskonstanten aufgespalten ist (vgl. Tab. 2). Bei den analogen

(Fortsetzung s.S. 50)

Fig. 1. ¹H-NMR-Spektrum (in CDCl₃) von (OC)₃Mn[$CR^2CHCR^2CR^2P(CH_3)_2S$] (R² = CO₂CH₃).

TABELLE 2 1 <u>H-NMR-SPEKTREN (In CDCI3, INT, S</u> TAN [CR ⁴ CR ³ CR ² CR ² PR ₂ ¹ 3] SOWIE (OC) ₃ Mn[C	<u>DARD TMS) DER HETEROMANC</u> R ² CR ² CR ² CR ² PR3/1 UND (OC) ₃ M	GA <u>NABICYCLEN (O</u> C) ₃ Mn[CR ² CR ² CR ² CR ² R2 ¹ 5] In[CR ² CR ³ CR ² CR ² FR2 ¹]	UND (OC) ³ Mn-
Verbindung		Chemische Verschiebungen δ (ppm)	Kopplungskonstanten J (Hz)
(OC) ₃ Mn[CR ² CR ² CR ² CR ² P(CH ₃) ₂ S]	$(R^2 = CO_2 CH_3)$	2.03(d) } P(CH ₃)2 2.27(d) } 3.75(s) 3.82(s) OCH ₃	2J(HP) 12.7 2J(HP) 13.4
	(R ² = CO ₂ C ₂ H ₅)	3.85(s)) 1.17—1.44(m) OCH2CH3 2.03(d) } P(CH3)2 2.26(d) } P(CH3)2	2J(HP) 12,7 2J(HP) 13,4
	$(R^2 = CO_2 G_6 H_{11})$	4.06-4.42(m) OC <u>H2CH3</u> 1.02-2.21(m) OC <u>HCH2CH2CH2CH2</u> CH2 2.00(d)] P(CH3)2 2.23(d)] P(CH3)2	² J(HP) 12.6 2J(HP) 13.5
(OC)3Mn[cR ² CR ² CR ² CR ² CR ² P(C ₆ H ₅) ₂ 8]	(R ² = CO ₂ CH ₃)	4.95(s) OCHCH2CH2CH2CH2CH2 3.65(s) 3.71(s) 3.71(s) 0 OCH3	
	$(R^2 = CO_2 C_2 H_5)$	0.05(0)) 1.06-1.48(m) OCH ₂ CH ₃ 3.96-4.48(m) OCH ₂ CH ₃	
(OC)3Mn[OR ⁴ CR ³ CR ² CR ² F(CH ₃) ₂ S]	(R ² = CO2CH3; R ³ = R ⁴ = CO ₂ C ₂ H ₅)	1.27(t) } OCH ₂ CH ₃ 1.35(t) } OCH ₂ CH ₃ 2.03(d) } P(CH ₃)2 2.26(d) } P(CH ₃)2 3.74(s) } OCH ₃ 4.08-4.33(m) OCH ₂ CH ₃	3J(HH) 7.0 2J(HP) 12.9 2J(HP) 13.4

² /(НР) 12.Б ² /(НР) 13.4	4J(HP) 2.9 2J(HP) 11.7 2J(HP) 14.1	3J(HH) 7.4 2J(HP) 11.2 27222	37(HH) 7.4.2	^з J(НН) 7.3 ³ J(НН) 7.3	² J(HP) 12.2 ² J(HP) 14.2	³ J(HP) 14.6
1.99(d) } P(CH ₃)2 2.23(d) 3.73(s) 3.73(s) 3.79(s) OCH ₃	3.86(s)) 6.30(d) CH 1.61 (d) } P(CH ₃)2 2.36(d) }	3.89(s) ^f OCH3 1.23(t) []] OCH2 <i>CH</i> 3 1.36(t) []] OCH2 <i>CH</i> 3 1.51(d) []] P(CH3)2	$\begin{array}{c} \textbf{4.11(q)} \\ \textbf{4.12(q)} \\ \textbf{4.33(q)} \\ \textbf{4.34(q)} \\ \textbf{1.16(t)} \\ \textbf{1.16(t)} \\ \textbf{1.16(t)} \\ \textbf{1.14(t)} $	1.37 (t) ¹ 0CH2CH3 4.08 (q) 4.10 (q) 4.34 (q) 0CH2CH3	4.35(q) / 1.43(d) } P(CH ₃)2 2.37(d) } P(CH ₃)2 3.69(s) } OCH ₃	6.2b(d) CH
(R ² = C0 ₂ CH ₃ ; R ³ = H; R ⁴ = C0 ₂ CH ₃)	(R ² = CO ₂ CH ₃)	(R ² = CO ₂ C ₂ H ₅)	(R ² = CO ₂ C ₂ H ₅)		(R ² = CO ₂ CH ₃ ; R ³ = H)	
	(OC) ₃ Mn[CR ² CR ² CR ² CR ² F}(CH ₃) ₂]		OC)3Mn[CR ² CR ² CR ² CR ² F(C ₆ H ₅) ₂]		(OC)3Mn[CR ² CR ³ CR ² CR ² P(CH ₃) ₂]	

49

I

Phospholkomplexen sind die Unterschiede in den chemischen Verschiebungen und Kopplungskonstanten der beiden Methylgruppen noch grösser.

In den ¹³C-{¹H}-NMR-Spektren von (OC)₃Mn [$CR^2CR^2CR^2CR^2P(CH_3)_2S$] und (OC)₃Mn [$CR^2CR^2CR^2CR^2P(CH_3)_2$] ($R^2 = CO_2CH_3$) zeigt sich der gleiche Effekt noch deutlicher. Die Resonanzen der Brückenkopfkohlenstoffatome C(1) und C(4) der schwefelhaltigen und -freien Heteromanganabicyclen erscheinen analog vergleichbarer h^4 -Dienkomplexe [24] bei hohem Feld, während diejenigen der h^2 -gebundenen C-Atome bei tieferem Feld absorbieren.

Nach ³¹P-{¹H}-NMR-spektroskopischen Untersuchungen sind die chemischen Verschiebungen der Signale der PR_2^1 -Gruppe ($R^1 = CH_3$, C_6H_5) in den Thiaphosphamanganabicyclen mit denjenigen der entsprechenden Thiaphosphamanganacyclopentadiene vergleichbar. Dies ist neben den IR- und Kristallstrukturdaten eine weitere Bestätigung dafür, dass sich die $R_2^1P=S$ -Einheit tatsächlich wie ein Olefin verhält und unverändert an den Cyclotrimerisierungsreaktionen teilnimmt. Beim Übergang zu den schwefelfreien Manganabicyclen verschieben sich die ³¹P-{¹H}-NMR-Resonanzen nach höherem Feld.

Beschreibung der Strukturen von $(OC)_3Mn[CR^2CR^2CR^2CR^2P(CH_3)_2S]$ und $(OC)_3Mn[CR^2CR^2CR^2CR^2CR^2P(CH_3)_2]$ $(R^2 = CO_2CH_3)$

In beiden Verbindungen variieren die Mn-C-Abstände zwischen 205 und 216 pm (vgl. Tab. 3). Die durch die Atome C(1), C(4), C(5), C(6) und C(1), C(4), S(2), P(3) definierten Ebenen in $(OC)_3Mn[CR^2CR^2CR^2CR^2P(CH_3)_2S]$ $(R^2 = CO_2CH_3)$ bilden einen Winkel von 47° (vgl. Fig. 2). Die Methoxycarbonylgruppen von C(1) und C(4) sind um ca. 10 bzw. 13° und diejenigen an C(5) und C(6) um nur 3.5 bzw. 2° aus der Ebene gedreht. C(1) und C(4)besitzen also teilweise sp³-Hybridcharakter, womit das Mangan in einer Grenzbetrachtung über 2 σ -Bindungen und eine π -Bindung an C(1) und C(4) bzw. C(5) und C(6) geknüpft ist [25]. In diesem Sinne lässt sich auch die Bindungslängenabfolge lang-kurz-lang interpretieren, welche bei elektronenziehenden Resten am Ring bevorzugt wird und auch in der entschwefelten Verbindung $(OC)_{3}Mn [CR^{2}CR^{2}CR^{2}CR^{2}P(CH_{3})_{2}]$ (R² = CO₂CH₃) auftritt. In einer weiteren Grenzbetrachtung können die Bicyclen (OC)₃Mn [$CR^2CR^2CR^2CR^2P(CH_3)_2S$] und $(OC)_3Mn [CR^2CR^2CR^2CR^2P(CH_3)_2]$ $(R^2 = CO_2CH_3)$ auch als Dienkomplexe formuliert werden. Mit ca. 204 pm befindet sich die P=S-Bindung ziemlich genau in der Mitte zwischen einer Einfach- und Doppelbindung [26]. Die Winkel am Phosphor weichen nur um bis zu 5° vom Tetraederwinkel ab, während derjenige am Schwefel mit 97.7° wegen der Ringdeformation stark verkleinert ist.

 $(OC)_3Mn [CR^2CR^2CR^2CR^2P(CH_3)_2]$ ($R^2 = CO_2CH_3$) kristallisiert in der Raumgruppe $P2_1/m$ und besitzt eine kristallographische Spiegelebene, in der sich Mn(6) mit einer der drei CO- sowie der Phosphor mit den beiden Methylgruppen befinden. Eine Verfeinerung in der Raumgruppe $P2_1$ führte nicht zu einer Verbesserung der Struktur. Die Atome C(1)—C(4) und P(5) bilden einen Fünfring mit Briefumschlagkonformation (vgl. Fig. 2), in dem der Phosphor ca. 67 pm von der durch C(1)—C(4) gebildeten Ebene entfernt liegt. Der Interplanarwinkel beträgt 32°. Die Eliminierung des Schwefels bewirkt zwangsläufig eine deutliche Verringerung der transannularen Abstände und damit eine Verklei-

TABELLE 3

EINIGE A<u>TOMABSTÄNDE</u> [pm] UND WINKEL [Grad] IN (OC)₃Mn[$CR^2CR^2CR^2P(CH_3)_2$ S] (I) UND (OC)₃Mn($CR^2CR^2CR^2P(CH_3)_2$] (II) (R² = CO₂CH₃) (in Klammern Standardabweichungen in Einheiten der letzten Dezimalstelle)

Bindung	I	11	Bindung	1	11
Mn—C(7)	181.3(3)	180,1(8)	C(11)O(13)	133.4(3)	132.7(9)
MnC(8)	179.8(3)	176,9(13)	O(13)-C(14)	144.4(4)	145.0(11)
Mn—C(9)	181.0(3)	180.1(8)	C(2)-C(21)		150.4(10)
C(7)-O(7)	114.4(4)	113.7(8)	C(21)-O(22)		118.2(9)
C(8)-O(8)	114.4(4)	115.7(13)	C(21)O(23)		131.3(8)
C(9)O(9)	114.8(3)	113.7(8)	O(23)-C(24)		145.9(11)
Mn-C(1)	213.1(2)	215.8(8)	C(3)-C(31)		150.4(10)
MnC(2)		205.0(7)	C(31)O(32)		118.2(9)
Mn—C(3)		205.0(7)	C(31)—O(33)		131.3(8)
Mn—C(4)	215.0(3)	215.8(8)	O(33)C(34)		145.9(11)
Mn—C(5)	208.1(2)		C(4)-C(41)	148.1(3)	146.8(10)
MnC(6)	207.2(2)		C(41)O(42)	120.9(4)	119.3(9)
C(1)—S	183.2(3)		C(41)O(43)	133.0(3)	132.7(9)
C(1)—C(2)		144.7(9)	O(43)C(44)	144.7(4)	145.0(11)
SP	203.8(1)		C(5)—C(51)	150.4(3)	
C(2)C(3)		140.6(13)	C(51)—O(52)	119.5(3)	
P—C(4)	179.1(2)	176.9(7)	C(51)—O(53)	133.1(3)	
C(3)—C(4)		144.7(9)	O(53)—C(54)	144.6(5)	
C(4)—C(5)	146.1(3)		C(6)C(61)	151.7(4)	
C(5)C(6)	141.0(3)		C(61)O(62)	119.9(3)	
C(6)-C(1)	145.0(3)		C(61)—O(63)	131.8(3)	
P-C(1)		176.9(7)	O(63)—C(64)	144.9(5)	
C(1)-C(11)	148.8(4)	146.8(10)	P-C(15)	178.8(3)	177.2(15)
C(11)O(12)	120.1(4)	119.3(9)	P-C(25)	178.6(4)	176.3(15)
C(1)-Mn- $C(4)$	80.1(1)	69.7(2)	C(2)-C(3)-C(31)		124.1(6)
C(1) - Mn - C(7)	94.8(1)	98.2(3)	C(4) - C(3) - C(31)		124.1(6)
C(1) - Mn - C(8)		104.7(4)	C(3) - C(31) - O(32)		125.3(8)
C(1) - Mn - C(3)	165.2(1)	161.5(3)	C(3) - C(31) - O(33)		195.0(9)
C(4) = Mm = C(8)	103.2(1)	101.3(3)	C(31) = C(31) = C(33)		120.0(8)
C(4) = Mn = C(8)	94.7(1)	104.7(4)	U(31) = U(33) = U(34)	113 0/11	01 6(2)
$C(7) = M_{T} = C(8)$	01 7(1)	91 6(4)	$M_{2} = C(4) = C(5)$	67 2/1)	51.0(8)
C(7) = Mn = C(9)	91.7(1)	89 7(5)	$M_{\rm m} = C(4) = C(3)$	07.3(1)	65 0(4)
C(8) = Mn = C(9)	06.4(1)	03.7(3) 01.6(4)	$M_{m} = C(4) = C(4)$	191 2(9)	196 6(6)
C(6) - C(1) - S	118 0(9)	51.0(~2)	$P_{-C}(A) = C(A1)$	107 8(2)	119 9/6)
P = C(1) = C(2)	110.0(2)	108 3(5)	C(5) - C(4) - C(41)	120 3(2)	115.5(0)
$C(1) \rightarrow S \rightarrow P$	97.7(1)	200.0(0)	C(3) - C(4) - C(41)	120.0(2)	128.2(7)
C(1) - C(2) - C(3)	••••	111.4(6)	C(4) - C(41) - O(42)	121.8(2)	122.8(8)
S-P-C(4)	104.1(1)		C(4) - C(41) - O(43)	115.1(2)	112.2(7)
C(2) - C(3) - C(4)		111.4(6)	Q(42) - C(41) - O(43)	123.2(2)	125.0(8)
P-C(4)-C(5)	121.6(2)		C(41) = O(43) = C(44)	116.3(2)	115.6(8)
C(3)-C(4)-P		108.3(5)	C(4)-C(5)-C(51)	121.3(2)	
C(4)-C(5)-C(6)	119.0(2)		C(6) - C(5) - C(51)	119.7(2)	
C(4)PC(1)		88.4(5)	C(5)-C(51)-O(52)	126.2(2)	
C(5)-C(6)-C(1)	116.0(2)		C(5)-C(51)-O(53)	108.9(2)	
Mn-C(1)-S	122.3(1)		O(52) - C(51) - O(53)	124.9(2)	
Mn-C(1)-C(2)		65.9(4)	C(51)-O(53)-C(54)	115.3(3)	
Mn-C(1)-C(6)	67.7(1)		C(1)-C(6)-C(61)	123.8(2)	
Mn-C(1)-P		91.6(3)	C(5)-C(6)-C(61)	120.1(2)	
MnC(1)C(11)	116.4(2)	126.6(6)	C(6)-C(61)-O(62)	126.3(2)	
S-C(1)-C(11)	110.0(2)		C(6)-C(61)-O(63)	108.2(2)	
PC(1)C(11)		119.9(6)	O(62)-C(61)-O(63)	125.5(3)	
C(6)-C(1)-C(11)	117.1(2)	-	C(61)-O(63)-C(64)	116.8(3)	
C(2)-C(1)-C(11)		128.2(7)	S-P-C(15)	109.6(1)	
C(1)C(11)O(12)	124.3(2)	122.8(8)	C(1)-PC(15)		115.3(5)
C(1)-C(11)-O(13)	112,1(2)	112.2(7)	<u>S</u> PC(25)	107.7(1)	

Bindung	I	II	Bindung	I	II
O(12)-C(11)-O(13)	123.5(2)	125.0(8)	C(1)-P-C(25)		115.0(5)
C(11)-O(13)-C(14)	116.6(3)	115.6(8)	C(4)PV(15)	114.3(1)	115.3(5)
C(1)-C(2)-C(21)	• •	124.1(6)	C(4)PC(25)	112.0(1)	115.0(5)
C(3)-C(2)-C(21)		124.1(6)	C(15)—P—C(25)	108.9(2)	107.3(9)
C(2)-C(21)-O(22)		125.3(8)	Mn-C(7)-O(7)	175.8(3)	178.7(8)
C(2)C(21)O(23)		109.7(7)	Mn—C(8)—O(8)	177.8(3)	178.3(12)
C(22)C(21)-O(23)		125.0(8)	Mn-C(9)-O(9)	175.7(3)	178.7(8)
C(21)-O(23)-C(24)		116.6(8)			

TABELLE 3 (Fortsetzung)

nerung der Bindungswinkel innerhalb des Rings. Aus sterischen Gründen besitzt der Winkel C(1)-P(5)-C(4) den ungewöhnlich kleinen Wert von 88.4°. Die CO_2CH_3 -Gruppen an C(1) und C(4) sind nur um 1.0° und diejenigen an C(2) und C(3) um 5.6° aus der Ebene gedreht.

Experimenteller Teil

Für die chromatographischen Trennungen wurden filtrierte und entgaste Elutionsmittel verwendet. Alle anderen Arbeitsschritte erfolgten unter N_2 -Atmosphäre in getrockneten (Natrium, LiAlH₄), frisch destillierten und N_2 -gesättigten Lösungsmitteln.

Allgemeine Vorschrift für die Synthese der Heteromanganabicycloheptadiene $(OC)_3 Mn[CR^2CR^2CR^2CR^2PR_2^1S]$ $(R^1 = CH_3, C_6H_5: R^2 = CO_2CH_3, CO_2C_2H_5)$

 $0.3-0.5 \text{ mmol } [(OC)_4 \text{MnPR}_2^1\text{S}]_2 [16] \text{ und } 2.4-4.0 \text{ mmol } \text{R}^2\text{C}=\text{CR}^2 \text{ werden}$ in 100 ml THF innerhalb 20 min auf 66°C erwärmt. Man rührt noch 30 min bei dieser Temperatur, lässt abkühlen und zieht das Lösungsmittel im Vakuum ab. Es wird an einer kurzen Kieselgelsäule mit CH₂Cl₂/Ethylacetat 1/1 chromatographiert und das Elutionsmittel im Vakuum abgezogen. Die mitteldruckchromatographische Aufarbeitung erfolgt mit CCl₄/CHCl₃ 2/1 bzw. CHCl₃ (für R¹ = CH₃; R² = CO₂CH₃) an Kieselgel. Die nach Entfernen des Elutionsmittels im Vakuum zurückbleibenden gelben Öle kristallisieren innerhalb 12 h.

(1) 7,7,7-Tricarbonyl-1,4,5,6-tetra(methoxycarbonyl)-3,3-dimethyl-2 λ^4 -thia-3 λ^5 -phospha-7(5,6-dihapto)-manganabicyclo[2.2.1]heptadien-2,5. A. Aus [(OC)₄-MnP(CH₃)₂S]₂. Einwaage 190 mg (0.37 mmol) [(OC)₄MnP(CH₃)₂S]₂ und 408 mg (2.87 mmol) C₂(CO₂CH₃)₂. Ausbeute 220 mg (58.3%). Zers.-P. 130° C. ³¹P-{¹H}-NMR (CH₂Cl₂): δ 74.4 ppm. ¹³C-{¹H}-NMR (CDCl₃): δ 13.54 ppm (d, ²J(CP) 46.1 Hz; P(CH₃)₂); 19.99 ppm (d, ²J(CP) 57.9 Hz; P(CH₃)₂); 44.94 ppm (d, J(CP) 72.3 Hz; R²CP(CH₃)₂); 52.09, 52.36, 53.03 ppm (s, OCH₃); 53.66 ppm (s, R²CS); 101.58, 103.06 ppm (s, CR²CR²CR²CR²); 167.03, 170.45, 171.21 ppm (s, CO₂CH₃). MS (70 eV): m/e = 316 (16.4%, (C₂O₂CH₃)₄S). (Gef.: C, 39.26; H, 3.36; Mn, 10.47; S, 6.51; Molmasse massenspektrometr., 516. C₁₇H₁₈MnO₁₁PS ber.: C, 39.55; H, 3.51; Mn, 10.64; S, 6.21%; Molmasse, 516.3).

B. Aus $(OC)_4MnSP(CH_3)_2C(CO_2CH_3)C(CO_2CH_3)$ [13]. 140 mg (0.35 mmol) $(OC)_4MnSP(CH_3)_2C(CO_2CH_3)C(CO_2CH_3)$ und 77 mg $(0.54 \text{ mmol}) C_2(CO_2CH_3)_2$ werden in 50 ml THF innerhalb 15 min auf 66°C erwärmt. Man rührt 2 h bei

Fig. 2. ORTEP-bilder von (OC)₃Mn[$CR^2CR^2CR^2P(CH_3)_2$)S] (oben) und (OC)₃Mn[$CR^2CR^2CR^2CR^2p_-$ (CH₃)₂] (unten) (R² = CO₂CH₃).

dieser Temperatur, lässt abkühlen und zieht das Solvens im Vakuum ab. Die weitere Aufarbeitung erfolgt analog A. Ausbeute 160 mg (89.0%). Zers.-P. 130°C. (Gef.: C, 39.37; H, 3.31; S, 6.82; Molmasse massenspektrometr., 516. $C_{17}H_{18}MnO_{11}PS$ ber.: C, 39.55; H, 3.51; S, 6.21%; Molmasse, 516.3).

(2) 7, 7, 7-Tricarbonyl-1, 4, 5, 6-tetra(ethoxycarbonyl)-3, 3-dimethyl- $2\lambda^4$ -thia-3 λ^5 -phospha-7(5, 6-dihapto)manganabicyclo[2.2.1]heptadien-2, 5. Einwaage 250 mg (0.48 mmol) [(OC)₄MnP(CH₃)₂S] 2 und 653 mg (3.84 mmol) C₂(CO₂C₂H₅)₂. Ausbeute 130 mg (23.6%). Zers.-P. 125°C. ³¹P-{¹H}-NMR (CH₂Cl₂): δ 73.7 ppm. (Gef.: C, 44.40; H, 4.87; Mn, 9.52; S, 5.83; Molmasse massenspektrometr., 572. C₂₁H₂₆MnO₁₁PS ber.: C, 44.07; H, 4.58; Mn, 9.60; S, 5.60%; Molmasse, 572.4).

(3) 7,7,7-Tricarbonyl-1,4,5,6-tetra(methoxycarbonyl)-3,3-diphenyl- $2\lambda^4$ -thia-3 λ^5 -phospha-7(5,6-dihapto)manganabicyclo[2.2.1]heptadien-2,5. Einwaage 340 mg (0.44 mmol) [(OC)₄MnP(C₆H₅)₂S] ₂ und 500 mg (3.52 mmol) C₂-(CO₂CH₃)₂. Ausbeute 60 mg (10.6%). Zers.-P. 135°C. ³¹P-{¹H}-NMR (CH₂Cl₂): δ 73.5 ppm. MS (70 eV): m/e = 316 (14.8%, (C₂O₂CH₃)₄S). (Gef.: C, 50.78; H, 3.66; Mn, 8.23; S, 5.78; Molmasse massenspektrometr., 640. C₂₇H₂₂MnO₁₁PS ber.: C, 50.64; H, 3.46; Mn, 8.58; S, 5.01%; Molmasse, 640.4).

(4) 7,7,7-Tricarbonyl-1,4,5,6-tetra(ethoxycarbonyl)-3,3-diphenyl-2 λ^4 -thia-3 λ^5 -phospha-7(5,6-dihapto)manganabicyclo[2.2.1]heptadien-2,5. Einwaage 270 mg (0.35 mmol) [(OC)₄MnP(C₆H₅)₂S] ₂ und 476 mg (2.80 mmol) C₂-(CO₂C₂H₅)₂. Ausbeute 250 mg (51.1%). Schmp. 124°C (unter Zers.). ³¹P-{¹H}-NMR (CH₂Cl₂): δ 73.7 ppm. MS (70 eV): m/e = 372 (10.5%, (C₂O₂C₂H₅)₄S). (Gef.: C, 53.74; H, 4.43; Mn, 7.54; S, 5.02; Molmasse massenspektrometr., 697. C₃₁H₃₀MnO₁₁PS ber.: C, 53.46; H, 4.34; Mn, 7.89; S, 4.60%; Molmasse, 696.6).

(5) 7,7,7-Tricarbonyl-1,4,5,6-tetra(cyclohexoxycarbonyl)-3,3-dimethyl-2 λ^4 thia-3 λ^5 -phospha-7(5,6-dihapto)manganabicyclo[2.2.1]heptadien-2,5. 350 mg (0.67 mmol) [(OC)₄MnP(CH₃)₂S]₂ und 1.50 g (5.40 mmol) C₂(CO₂C₆H₁₁)₂ werden in 100 ml Cyclohexan auf 40°C erwärmt und 3 d bei dieser Temperatur gerührt. Dann lässt man abkühlen, filtriert vom braunen Niederschlag (P4) und zieht das Lösungsmittel im Vakuum ab. Das verbleibende Öl wird in CH₂Cl₂ aufgenommen und an einer kurzen Kieselgelsäule chromatographiert. Nach Abziehen des Elutionsmittels im Vakuum wird mit CHCl₃ an Kieselgel mitteldruckflüssigkeitschromatographisch gereinigt. Nach Entfernen des Solvens im Vakuum wird aus Petrolether (Sdb. 60—90°C) umkristallisiert. Ausbeute 150 mg (14.1%). Schmp. 112°C (unter Zers.) ³¹P-[¹H]-NMR (CH₂Cl₂): δ 72.7 ppm. (Gef.: C, 56.63; H, 6.77; Mn, 6.59; S, 4.57; Molmasse massenspektrometr., 789. C₃₇H₅₀MnO₁₁PS ber.: C, 56.34; H, 6.39; Mn, 6.96; S, 4.06%; Molmasse, 788.8).

Allgemeine Vorschrift für die Synthese der unsymmetrisch substituierten Heteromanganabicycloheptadiene $(OC)_3 Mn[CR^4CR^3CR^2CR^2P(CH_3)_2S]$ $(R^4 = R^3 = CO_2C_2H_5, R^2 = CO_2CH_3; R^4 = CO_2CH_3, R^3 = H, R^2 = CO_2CH_3)$

Eine Lösung von ca. 1 mmol $(OC)_4MnSP(CH_3)_2C(CO_2CH_3)C(CO_2CH_3)$ und 8 mmol Alkin in 100 ml THF wird innerhalb 20 min auf 66°C erwärmt und 10 min bei dieser Temperatur gerührt. Mann lässt abkühlen, zieht das Solvens i. Vak. ab und chromatographiert mit CH_2Cl_2 an einer kurzen Kieselgelsäule. Nach Ab-

ziehen des Elutionsmittels i. Vak. wird mitteldruckflüssigkeitschromatographisch mit CH_2Cl_2 an Kieselgel gereinigt. Die zweite Fraktion liegt nach Entfernung des Eluiermittels im Vakuum als gelbes Öl vor. Dieses wird für $\mathbb{R}^4 = \mathbb{R}^3 = CO_2C_2H_5$, $\mathbb{R}^2 = CO_2CH_3$ aus Ether umkristallisiert. Im Fall von $\mathbb{R}^4 = CO_2CH_3$, $\mathbb{R}^3 = H$, $\mathbb{R}^2 = CO_2CH_3$ wird nochmals mit $CCl_4/CHCl_3$ 2/1 an Kieselgel mitteldruckchromatographiert. Nach Abziehen des Elutionsgemisches kristallisiert die vierte Fraktion innerhalb 12 h.

(1) 7,7,7-Tricarbonyl-1,6-bis(ethoxycarbonyl)-4,5-bis(methoxycarbonyl)-3,3-dimethyl- $2\lambda^4$ -thia- $3\lambda^5$ -phospha-7(5,6-dihapto)manganabicyclo[2.2.1]heptadien-2,5. Einwaage 360 mg (0.90 mmol) (OC)₄MnSP(CH₃)₂C(CO₂CH₃)C-(CO₂CH₃) und 306 mg (1.80 mmol) C₂(CO₂C₂H₅)₂. Ausbeute 460 mg (94.4%). Zers.-P. 135° C. ³¹P-{¹H}-NMR (CH₂Cl₂): δ 74.1 ppm. MS (70 eV): m/e = 344(2.9%, (C₂O₂CH₃)₂(C₂O₂C₂H₅)₂S). (Gef.: C, 41.50; H, 4.07; Mn, 9.80; S, 6.46; Molmasse massenspektrometr., 544. C₁₇H₂₂MnO₁₁PS ber.: C, 41.88; H, 4.07; Mn, 10.09; S, 5.89%; Molmasse 544.4).

(2) 7,7,7-Tricarbonyl-1,4,5-tris(methoxycarbonyl)-3,3-dimethyl-2 λ^4 -thia-3 λ^5 -phospha-7(5,6-dihapto)manganabicyclo[2.2.1]heptadien-2.5. Einwaage 430 mg (1.07 mmol) (OC)₄MnSP(CH₃)₂C(CO₂CH₃)C(CO₂CH₃) und 180 mg (2.14 mmol) HC₂CO₂CH₃. Ausbeute 335 mg (68.4%). Zers.-P. 129°C. ³¹P-{¹H}-NMR (CH₂Cl₂): δ 70.1 ppm. MS (70 eV): m/e = 258 (30.0%, (C₂O₂CH₃)₃CHS). (Gef.: C, 39.37; H, 3.87; Mn, 11.87; S, 7.34; Molmasse massenspektrometr., 458. C₁₅H₁₆MnO₉PS ber.: C, 39.31; H, 3.52; Mn, 11.99; S, 7.00%; Molmasse 458.3).

<u>Freisetzung</u> des Thiophens $CR^2CR^2CR^2CR^2S$ aus $(OC)_3Mn[CR^2CR^2CR^2CR^2P-(CH_3)_2S]$ $(R^2 = CO_2CH_3)$

2,3,4,5-Tetra(methoxycarbonyl)thiophen. A. Aus (OC)₃Mn [$CR^2CR^2CR^2CR^2-P(CH_3)_2S$] (R² = CO₂CH₃) und (NH₄)₂Ce(NO₃)₆. Eine Lösung von 200 mg (0.39 mmol) (OC)₃Mn [$CR^2CR^2CR^2CR^2P(CH_3)_2S$] (R² = CO₂CH₃) und 247 mg (0.45 mmol) (NH₄)₂Ce(NO₃)₆ in 30 ml Methanol/THF 1/1 wird 30 min gerührt. Anschliessend zieht man das Lösungsmittel im Vakuum ab und extrahiert den Rückstand dreimal mit Benzol. Dann wird vom unlöslichen Cersalz abfiltriert (P3) und das Solvens im Vakuum entfernt. Der Rückstand wird in Ethylacetat aufgenommen und an einer kurzen Kieselgelsäule chromatographiert. Ausbeute 117 mg (95.5%). Schmp. 125°C. ¹H-NMR (C₆D₆): δ 3.24, 3.59 ppm (s, OCH₃). (Gef.: C, 45.37; H, 3.75; S, 10.28; Molmasse massenspektrometr., 316. C₁₂H₁₂-O₈S ber.: C, 45.57; H, 3.82; S, 10.14%; Molmasse 316.3).

B. Aus $(OC)_3Mn [CR^2CR^2CR^2CR^2P(CH_3)_2S] (R^2 = CO_2CH_3)$ und CO. Eine Lösung von 100 mg (0.19 mmol) $(OC)_3Mn [CR^2CR^2CR^2CR^2P(CH_3)_2S]$ $(R^2 = CO_2CH_3)$ in 50 ml THF setzt man in einem 500 ml Hochdruck-Rollautoklaven 12 h bei 100°C einem CO-Druck von 200 bar aus. Nach dem Öffnen des Autoklaven zieht man das Lösungsmittel i. Vak. ab. Der Rückstand wird mit Ethylacetat an einer kurzen Kieselgelsäule chromatographiert. Ausbeute 50 mg (81.6%). Schmp. 125°C.

Allgemeine Vorschrift zur Synthese der Phospholkomplexe $(OC)_3 Mn$ -[$CR^2CR^2CR^2CR^2PR_2^1$] $(R^1 = CH_3, C_6H_5; R^2 = CO_2CH_3, CO_2C_2H_5)$ Zu einer Suspension von ca. 17 mmol neutralem Raney-Nickel in 100 ml

(OC) ₃ Mn[CR ² gegeben durch	CR ² CR ² CR ² P(C) den Ausdruck: 7	H_3)2] (II) ($R^2 = (H_1)^2$)2] (II) ($R^2 = (U_1)^2$	$10^{-1}h^{2}a^{+2} + U_{22}h^{2}b^{+1}$	12 + U ₃₃ 1 ² c [#] 2 + 2	bwelchungen in F 1U ₂ 3ktb*c* + 2U	linheiten der letz 13fila [*] c [*] + 2U ₁₂ f	ten Dezimalsteil ika*b*)].	le). Der Temperat	urfaktor ist
Atom	x/a	y/b	z/c	U ₁₁	v_{22}	U_{33}	U_{23}	U ₁₃	U12
Verbindung I									
c(1)	0.6382(3)	0.8733(1)	0.3914(3)	508(14)	322(11)	353(12)	66(9)	-7(10)	-18(10)
s	0.5689(1)	0,8841(1)	0.5871(1)	751(5)	365(3)	380(3)	1(2)	82(3)	-20(3)
đ	0.5468(1)	0.7642(1)	0.5882(1)	500(4)	398(3)	292(3)	72(2)	-6(2)	-11(3)
C(4)	0.6594(3)	0.7148(1)	0.3862(3)	469(13)	315(11)	308(11)	63(8)	1(9)	-26(9)
C(6)	0.6011(3)	0.7508(1)	0.2551(2)	411(12)	327(11)	294(10)	69(8)	30(9)	-7(9)
C(6)	0,5430(3)	0.8314(1)	0.2549(3)	448(13)	332(11)	331(11)	83(9)	26(9)	1(9)
Mn	0.7318(1)	0,7644(1)	0.2746(1)	406(2)	332(2)	365(2)	64(1)	12(1)	-32(1)
C(11)	0.7129(3)	0.9601(1)	0.3780(3)	647(16)	334(12)	499(15)	74(11)	-20(12)	-16(11)
0(12)	0.7193(3)	0.9725(1)	0.2560(3)	1046(18)	484(11)	582(13)	226(10)	58(12)	-228(11)
0(13)	0.7738(2)	0.9913(1)	0.5176(2)	734(14)	411(10)	650(11)	31(9)	-49(10)	-179(9)
C(14)	0.8464(5)	1.0679(2)	0.5184(5)	726(24)	413(17)	924(27)	69(17)	-17(20)	-187(15)
C(15)	0.6877(4)	0,7376(2)	0.7246(4)	685(19)	620(19)	382(14)	68(13)	(61)06-	90(16)
C(26)	0.3687(4)	0.7476(2)	0.6531(4)	620(19)	622(19)	440(15)	114(14)	96(14)	-46(15)
C(41)	0.5424(3)	0.6266(1)	0.3764(3)	594(15)	356(12)	374(12)	103(10)	(11)01	-46(11)
0(42)	0.5441 (3)	0.5981(1)	0.4923(2)	1446(23)	432(11)	404(10)	179(9)	-28(12)	-123(12)
0(43)	0.5243(2)	0.5822(1)	0.2290(2)	755(13)	292(8)	367(9)	58(7)	31(8)	-69(8)
C(44)	0.6017(6)	0.4959(2)	0.2147(4)	1182(32)	323(15)	544(19)	71(13)	-6(20)	-82(17)
C(61)	0.3932(3)	0.7048(1)	0.1246(3)	474(13)	346(11)	372(12)	84(9)	-18(10)	
O(62)	0.4116(2)	0.6887(1)	-0.0132(2)	817(14)	621(12)	326(9)	72(8)	-26(9)	-216(11)
O(53)	0.2710(2)	0.6859(1)	0.1866(2)	450(11)	780(14)	536(11)	26(10)	17(9)	-151(10)
C(54)	0.1572(5)	0.6402(3)	0.0749(6)	621(22)	1262(41)	930(33)	96(28)	-107(21)	-324(25)
C(61)	0.4811(3)	0.8709(1)	0.1223(3)	566(15)	317(11)	384(12)	91(9)	-21(11)	-31(10)
O(62)	0.5211(3)	0.8603(1)	-0.0086(2)	904(16)	571(12)	379(10)	165(9)	93(10)	90(11)
O(63)	0.3702(2)	0.9163(1)	0.1733(2)	722(14)	597(12)	520(11)	242(10)	58(10)	223(10)
C(64)	0.2919(5)	0.9573(3)	0.0613(5)	895(30)	712(25)	769(25)	335(20)	-91(22)	228(21)
C(1)	0.8367(3)	0.8127(2)	0.1486(3)	532(16)	547(16)	494(16)	61(12)	23(12)	99(13)
0(7)	0.9083(3)	0.8391(2)	0.0679(3)	831(17)	010(1D)	724(16)	284(14)	244(13)	252(14)
C(B)	0.8945(3)	.0.7615(2)	0.4082(4)	489(15)	452(14)	603(17)	142(12)	5(13)	-60(11)
O(B)	0.9975(3)	0.7622(2)	0.4951(3)	588(14)	979(19)	962(19)	384(15)	-267(13)	-98(13)
C(9)	0.7622(3)	0.6704(2)	0.1388(3)	427(14)	490(15)	535(15)	28(12)	71(11)	-36(11)
0(9)	0.7866(3)	0.6135(1)	0.0475(3)	675(14)	619(14)	858(16)	-224(12)	223(12)	-28(11)

: i 1

: |

1

!

-

ORTSKOORDINATEN (in Einheiten der Elementarzeile) UND TEMPERATURPARAMETER [pm²] VON (OC)₃Mnf CR²CR²Pr(CH₃)₅] (1) UND

TABELLE 4

						A STATE OF A DESCRIPTION OF A DESCRIPTIO			
c(1)	0.5422(10)	0.3260(4)	0.2756(9)	370(50)	288(42)	361 (45)	-24(36)	118(41)	39(39)
C(2)	0.7116(9)	0,2934(4)	0.3992(9)	214(42)	394(44)	326(42)	-65(34)	79(35)	-33(36)
C(3)	0.7116(9)	0.2066(4)	0.3992(9)	214(42)	394(44)	326(42)	-66(34)	79(35)	-33(35)
C(4)	0.5422(10)	0,1740(4)	0.2756(9)	370(50)	288(42)	361(45)	-24(36)	118(41)	-39(39)
Ъ	0.3781(4)	0,25	0.2364(4)	308(19)	379(18)	355(18)	0	108(16)	0
Mn	0.6725(2)	0.26	0.1620(2)	328(11)	206(9)	346(11)	0	169(9)	0
c(11)	0.4902(13)	0.4127(5)	0.2346(10)	460(62)	380(51)	461(55)	-82(43)	181(47)	-1(48)
0(12)	0.3390(8)	0.4344(3)	0,1637(9)	371(39)	418(37)	1124(55)	-18(37)	192(40)	116(33)
0(13)	0.6295(8)	0.4621 (3)	0.2816(7)	452(38)	288(31)	771(42)	55(30)	183(34)	29(31)
C(14)	0.6895(19)	0.6492(6)	0.2489(20)	708(97)	324(58)	979(112)	-41 (67)	271(90)	111(67)
C(21)	0.8610(12)	0.3453(5)	0.5262(10)	424(67)	385(49)	448(53)	-34(42)	193(48)	31(47)
0(22)	1.0049(9)	0,3494(5)	0.5352(9)	429(41)	1274(68)	1065(58)	-694(50)	347(42)	-204(46)
0(23)	0.8071(7)	0.3860(4)	0.6252(7)	438(38)	568(38)	488(36)	181 (31)	181 (32)	98(32)
C(24)	0.9279(16)	0.4482(9)	0.7393(18)	393(71)	844(96)	618(80)	-342(72)	65(68)	79(67)
C(31)	0.8610(12)	0.1547(5)	0.5262(10)	424(57)	385(49)	448(63)	-34(42)	193(48)	31(47)
0(32)	1.0049(9)	0,1506(5)	0.5352(9)	429(41)	1274(68)	1055(58)	-694(50)	347(42)	-204(46)
0(33)	0.8071(7)	0.1140(4)	0.6252(7)	438(38)	568(38)	488(36)	-181 (31)	181 (32)	98(32)
C(34)	0.9279(16)	0.0518(9)	0.7393(18)	393(71)	844(96)	618(80).	-342(72)	65(68)	-79(67)
C(41)	0.4902(13)	0.0873(5)	0.2346(10)	460(62)	380(51)	461 (55)	-82(43)	181 (47)	-1(48)
0(42)	0.3390(8)	0.0656(3)	0.1637(9)	371(39)	418(37)	1124(55)	-18(37)	192(40)	116(33)
0(43)	0.6295(8)	0.0379(3)	0.2816(7)	452(38)	288(31)	771(42)	66(30)	183(34)	29(31)
C(44)	0.5895(19)	-0.0492(6)	0.2489(20)	708(97)	324(58)	979(112)	-41 (67)	271(90)	111(67)
C(15)	0.1992(22)	0.25	0.0252(20)	402(97)	686(113)	349(90)	0	45(76)	0
C(25)	0.2857(25)	0.25	0.3835(22)	538(117)	1026(151)	423(100)	0	289(91)	0
C(7)	0.8097(11)	0.3283(5)	0.1352(10)	429(58)	388(51)	439(52)	-43(42)	200(46)	-36(45)
0(1)	0.8952(9)	0.3773(4)	0.1150(9)	760(51)	557(44)	1011(53)	53(41)	602(43)	-157(40)
C(8)	0.6271(18)	0.25	-0.0621(17)	665 (99)	356(69)	537(86)	0	410(8)	0
0(8)	0,4356(14)	0.25	-0.2096(12)	977(89)	828(61)	457(58)	0	160(62)	0
C(9)	0.8097(11)	0.1717(5)	0.1352(10)	429(58)	388(51)	439(52)	-43(42)	200(46)	-36(45)
(6))	0.8952(9)	0.1227(4)	0.1150(9)	760(51)	557 (44)	1011(53)	53(41)	502(43)	-157(40)

.

Verbindung II

57

LI MINIMUM ALLER.

Methanol gibt man 0.3 mmol $(OC)_3Mn[CR^2CR^2CR^2CR^2PR_2S]$ und rührt 24 h. Dann wird vom Raney-Nickel abzentrifugiert und das Lösungsmittel im Vakuum abgezogen. Der Rückstand wird in $CH_2Cl_2/Ethylacetat 2/1$ aufgenommen und an einer kurzen Kieselgelsäule chromatographiert. Nach Entfernen des Elutionsmittels im Vakuum kristallisieren die gelben Verbindungen innerhalb 12 h.

(1) 6,6,6-Tricarbonyl-1,2,3,4-tetra(methoxycarbonyl)-5,5-dimethyl-5 λ^4 phospha-6(2,3-dihapto)manganabicyclo[2.1.1]hexen-2. Einwaage 200 mg (0.39 mmol) (OC)₃Mn[CR²CR²CR²CR²P(CH₃)₂S] (R² = CO₂CH₃) und 1.00 g (17.03 mmol) Raney-Nickel. Ausbeute 180 mg (96.0%). Zers.-P. 180°C. ³¹P-{¹H}-NMR (CH₂Cl₂): δ 51.6 ppm. ¹³C-{¹H}-NMR (CDCl₃): δ 11.22 ppm (d, J(CP) 75.2 Hz; P(CH₃)₂); 19.52 ppm (d, J(CP) 21.6 Hz; P(CH₃)₂); 29.83 ppm (d, J(CP) 83.2 Hz; R²CP(CH₃)₂; 52.13, 53.26 ppm (s, OCH₃); 96.26 ppm (d, ²J(CP) 16.0 Hz; CR²CR²CR²CR²); 165.87 ppm (d, ³J(CP) 5.7 Hz; CR²C(CO₂CH₃)C-(CO₂CH₃)CR²); 168.45 ppm (d, ²J(CP) 11.4 Hz; PCCO₂CH₃). (Gef.: C, 42.55; H, 3.65; Mn. 11.22; Molmasse massenspektrometr., 484. C₁₇H₁₈MnO₁₁P ber.: C, 42.17; H, 3.75; Mn, 11.34%; Molmasse 484.2).

(2) 6,6,6-Tricarbonyl-1,2,3,4-tetra(ethoxycarbonyl)-5,5-dimethyl- $5\lambda^4$ -phospha-6(2,3-dihapto)manganabicyclo[2.1.1]hexen-2. Einwaage 180 mg (0.31 mmol) (OC)₃Mn[CR²CR²CR²CR²P(CH₃)₂S] (R² = CO₂C₂H₅) und 1.00 g (17.03 mmol) Raney-Nickel: Ausbeute 160 mg (94.2%). Schmp. 129°C (unter Zers.). ³¹P-{¹H}-NMR (CH₂Cl₂): δ 51.5 ppm. (Gef.: C, 46.89; H, 5.18; Mn, 9.63; Molmasse massenspektrometr., 540. C₂₁H₂₆MnO₁₁P ber.: C, 46.68; H, 4.85; Mn, 10.17%; Molmasse 540.3).

(3) 6,6,6-Tricarbonyl-1,2,3,4-tetra(ethoxycarbonyl)-5,5-diphenyl-5 λ^4 -phospha-6(2,3-dihapto)manganabicyclo[2.1.1]hexen-2. Einwaage 250 mg (0.36 mmol) (OC)₃Mn[CR²CR²CR²CR²P(C₆H₅)₂S] (R² = CO₂C₂H₅) und 1.00 g (17.03 mmol) Raney-Nickel. Ausbeute 220 mg (92.2%). Schmp. 121°C. ³¹P-{¹H}-NMR (CH₂Cl₂): δ 47.3 ppm. (Gef.: C, 56.25; H, 4.36; Mn, 8.08; Molmasse massenspektrometr., 664. C₃₁H₃₀MnO₁₁P ber.: C, 56.03; H, 4.55; Mn, 8.27%; Molmasse 664.5).

Darstellung des asymmetrisch substituierten Phospholkomplexes $(OC)_3$ Mn-[$CR^2CHCR^2CR^2P(CH_3)_2$] $(R^2 = CO_2CH_3)$

6,6,6-Tricarbonyl-1,2,4-tris(methoxycarbonyl)-5,5-dimethyl- $5\lambda^4$ -phospha-6(2,3-dihapto)manganabicyclo[2.1.1]hexen-2. Zu einer Suspension von 2.00 g (34.06 mmol) neutralem <u>Raney-Nickel in 100</u> ml Methanol gibt man 200 mg (0.44 mmol) (OC)₃Mn[CR²CHCR²CR²P(CH₃)S] (R² = CO₂CH₃) und erwärmt unter Rühren auf 65°C. Nach 3 h lässt man abkühlen, zentrifugiert vom Raney-Nickel und zieht das Lösungsmittel im Vakuum ab. Der Rückstand wird in CH₂Cl₂/Ethylacetat 2/1 aufgenommen und an einer kurzen Kieselgelsäule chromatographiert. Nach Entfernen des Elutionsmittels im Vakuum wird mit CH₂-Cl₂ an Kieselgel mitteldruckchromatographisch gereinigt. Ausbeute 35 mg (18.8%). ³¹P-[¹H]-NMR (CH₂Cl₂): δ 45.7 ppm (Gef.: Molmasse massenspektrometr., 426. C₁₅H₁₆MnO₉P ber.: Molmasse 426.2).

Experimentelles zur Strukturbestimmung

Einkristalle der Verbindungen $(OC)_3Mn[CR^2CR^2CR^2P(CH_3)_2S]$ und

 $(OC)_{3}Mn \left[CR^{2}CR^{2}CR^{2}CR^{2}P(CH_{3})_{2} \right]$ (R² = CO₂CH₃) erhält man aus Cyclohexan/Dichlormethan bzw. Methanol. Für die Strukturbestimmungen wurden Kristalle mit den ungefähren Abmessungen $0.5 \times 0.4 \times 0.3$ mm bzw. $0.3 \times$ 0.1×0.05 mm in je ein Markröhrchen abgefüllt. Die Komplexe kristallisieren triklin bzw. monoklin in den Raumgruppen $P\overline{1}$ bzw. $P2_1/m$ mit a 902.3(2), b 1692.1(3), c 867.0(2) pm, α 102.01(2), β 94.87(2), γ 90.68(2)°, $Z = 2, d_{\text{ber.}}$ 1.44 g cm⁻³, $d_{\text{gef.}}$ 1.43 g cm⁻³ bzw. a 842.6(2), b 1622.1(4), c 864.8(2) pm, $\beta 116.62(2)^{\circ}, Z = 2, d_{\text{ber}}, 1.52 \text{ g cm}^{-3}, d_{\text{gef}}, 1.52 \text{ g cm}^{-3}$. Zur Berechnung der Strukturen wurden die Intensitäten von 5914 bzw. 1546 symmetrieunabhängigen Reflexen bis zu θ -Werten von 27.5 bzw. 30° registriert. Ihre Lösung gelang mit Patterson-Synthesen, aus denen die Lagen des Mangan- und Phosphor- sowie bei $(OC)_3Mn \left[CR^2CR^2CR^2CR^2P(CH_3)_2S \right]$ $(R^2 = CO_2CH_3)$ auch des Schwefelatoms ermittelt werden konnten. Alle übrigen Atome wurden mit Differenz-Fourier-Synthesen lokalisiert. Bei (OC)₃Mn [CR²CR²CR²CR²P(CH₃)₂S] $(R^2 = CO_2CH_3)$ führte die Verfeinerung aller Atome mit Einheitsgewichten nach Einführung anisotroper Temperaturparameter (ausser H) zu einem R-Wert von 0.046. Bei der Verfeinerung der Struktur von (OC)₃Mn [CR²CR²CR²CR²P- $(CH_3)_2$ ($R^2 = CO_2CH_3$) nach der Methode der kleinsten Fehlerquadrate wurde eine Gewichtung der Reflexe mit dem Faktor 0.002 durchgeführt. Die abschliessenden R-Werte ergaben sich hierbei zu R = 0.127 und $R_w = 0.081$.

Die Strukturfaktoren wurden mit den Atomformfaktoren für neutrale Atome [27] und den in Tab. 4 angegebenen Atomparametern berechnet. Eine Liste der beobachteten (F_0) und berechneten (F_c) Strukturfaktoren kann bei den Autoren angefordert werden. Die Rechnungen wurden mit dem Programmsystem SHEL-76 [28] auf der Datenverarbeitungsanlage TR 440 des Rechenzentrums der Universität Tübingen durchgeführt.

IR-, NMR- und Massenspektren, Mikroelementaranalysen, Röntgenstrukturanalysen und Mitteldruckflüssigkeitschromatographie

IR-Spektren: Beckman IR 12 Gitterspektrometer und FT-Spektrometer der Fa. Bruker, Modell IFS 113c. ¹H (int. Standard TMS)-, ¹³C-{¹H} (int. Standard TMS; Messfrequenz 20.1 MHz)- und ³¹P-{¹H}-NMR (ext. Standard 85proz. Phosphorsäure/D₂O; Messfrequenz 32.39 MHz)-Spektren: WP 80 der Fa. Bruker. Massenspektren: Varian MAT 711 A. Mikroelementaranalysen: Carlo Erba, Modell 1104 und Atomabsorptionsspektralphotometer der Fa. Beckman, Modell 1248. Kristallstrukturen: Automatisches Einkristalldiffraktometer, Modell PI der Fa. Syntex ((OC)₃Mn[CR²CR²CR²CR²P(CH₃)₂S]) sowie Modell CAD 4 der Fa. Enraf-Nonius ((OC)₃Mn[CR²CR²CR²CR²P(CH₃)₂S]), R² = CO₂CH₃) (jeweils Graphitmonochromator, monochromatische Mo- K_{α} -Strahlung). Mitteldruckflüssigkeitschromatographie: Merck Fertigsäule, Modell Lobar Gr. B (310-25) LiChroprep Si 60 (40-63 μ m) sowie Duramat Dosierpumpe der Fa. CFG und UV-Detektor, Typ 6, Schreiber UA 5 und Multiplexer 1133 der Fa. ISCO.

Dank

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, danken wir für die finanzielle Förderung dieser Untersuchungen. Zu besonderem Dank sind wir der BASF Aktiengesellschaft und der Schering AG für die Überlassung von wertvollem Ausgangsmaterial verpflichtet. Den Herren Dr. K. Peters und Prof. H.G. von Schnering (Max-Planck-Institut für Festkörperforschung Stuttgart) danken wir für die Diffraktometermessung von (OC)₃Mn [$CR^2CR^2CR^2CR^2P(CH_3)_2S$] ($R^2 = CO_2CH_3$).

Literatur

- 1 H. Suzuki, K. Itoh, Y. Ishii, K. Simon und J.A. Ibers, J. Amer. Chem. Soc., 98 (1976) 8494.
- 2 L.D. Brown, K. Itoh, H. Suzuki, K. Hirai und J.A. Ibers, J. Amer. Chem. Soc., 100 (1978) 8232.
- 3 R. Burt, M. Cooke und M. Green, J. Chem. Soc. A, (1970) 2981.
- 4 Y. Wakatsuki, K. Aoki und H. Yamazaki, J. Amer. Chem. Soc., 96 (1974) 5284.
- 5 J.J. Eisch und J.E. Galle, J. Organometal. Chem., 96 (1975) C 23; H. Hoberg und W. Richter, J. Organometal. Chem., 195 (1980) 355.
- 6 Y. Wakatsuki und H. Yamazaki, J. Organometal. Chem., 139 (1977) 169.
- 7 D.R. McAlister, J.E. Bercaw und R.G. Bergman, J. Amer. Chem. Soc., 99 (1977) 1666.
- 8 Y. Wakatsuki, K. Aoki und H. Yamazaki, J. Amer. Chem. Soc., 101 (1979) 1123.
- 9 P. Caddy, M. Green, E. O'Brien, L.E. Smart und P. Woodward, J. Chem. Soc. Dalton Trans., (1980) 962.
- 10 H. Bönnemann, Angew. Chem., 90 (1978) 517; Angew. Chem. Int. Ed., 17 (1978) 505.
- 11 Y. Wakatsuki und H. Yamazaki, J. Chem. Soc. Dalton Trans., (1978) 1278.
- 12 E. Lindner, A. Rau und S. Hoehne, Angew. Chem., im Erscheinen; Angew. Chem. Int. Ed., im Erscheinen,
- 13 E. Lindner, A. Rau und S. Hoehne, Chem. Ber., im Erscheinen.
- 14 E. Lindner, A. Rau und S. Hoehne, Angew. Chem., im Erscheinen; Angew. Chem. Int. Ed., im Erscheinen.
- 15 E. Lindner, A. Rau und S. Hoehne, Angew. Chem., 91 (1979) 568; Angew. Chem. Int. Ed., 18 (1979) 534.
- 16 E. Lindner und B. Schilling, Chem. Ber., 110 (1977) 3889.
- 17 M. Bottrill, R. Davies, R. Goddard, M. Green, R.P. Hughes, B. Lewis und P. Woodward, J. Chem. Soc. Dalton Trans., (1977) 1252.
- 18 H. Gotthardt, Chem. Ber., 105 (1972) 188.
- 19 G.R. Pettit und E.E. von Tamelen, Organic Reactions, Vol. 12 (1962) 356.
- 20 E.H. Braye, W. Hübel und J. Caplier, J. Amer. Chem. Soc., 83 (1961) 4406.
- 21 J.L. Davidson und D.W.A. Sharp, J. Fluorine Chem., 7 (1976) 145.
- 22 K. Yasufuku, A. Hamada, K. Aoki und H. Yamazaki, J. Amer. Chem. Soc., 102 (1980) 4363.
- 23 S.G. Borleske und L.D. Quin, Phosphorus, (1975) 173.
- 24 H.L. Retcofsky, E.N. Frankel und H.S. Gutowsky, J. Amer. Chem. Soc., 88 (1966) 2710.
- 25 M.R. Churchill und R. Mason, Adv. Organometal. Chem., 5 (1967) 93 und zit. Lit.
- 26 L. Pauling, Die Natur der Chemischen Bindung, 3. Auflage, S. 217, Verlag Chemie, Weinheim/Bergstr. 1968.
- 27 D.T. Cromer und J.B. Mann, Acta Crystallogr. A, 24 (1968) 321.
- 28 G. Sheldrick, Universität Cambridge 1976.
- 29 E. Lindner und G. Funk, J. Organometal. Chem., 216 (1981) 393.